Implementation of a Pitzer Activity Model into Toughreact for Modeling Concentrated Solutions

نویسندگان

  • Guoxiang Zhang
  • Nicolas Spycher
  • Eric Sonnenthal
  • Carl Steefel
چکیده

TOUGHREACT (Xu et al., 2006) is a generalpurpose reactive geochemical transport numerical simulator. It deals with multiphase flow, solute transport and geochemical reactions including aqueous complexation, mineral dissolution/ precipitation and cation exchange. Making use of an extended Debye-Hückel ion activity model, this simulator can handle solutions concentrated to slightly above ~1 molal with caution, and only for NaCl-dominant waters at ionic strengths up to ~4 molal. However, brines produced under natural and artificial conditions are often more concentrated. To handle such brines, a Pitzer activity model was implemented in TOUGHREACT, based on the standard Harvie-Moller-Weare (HMW) formulation that accounts for all binary and ternary combinations of interaction terms. The vapor-pressure-lowering effect caused by the low water activity in brines was also accounted for by this code. The extended version was verified and tested using published results from laboratory experiments and benchmarked against other computer codes. This new version of TOUGHREACT is being applied to the investigation of boiling and evaporation within and around the proposed high-level nuclear waste emplacement tunnels at Yucca Mountain, Nevada. An example application is presented. Processes considered in the example include evaporation of porewater to near dryness, formation of highly concentrated brines, precipitation of deliquescent salts, and generation of acid gases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Nanofiltration for ‎Concentrated Electrolyte Solutions using ‎Linearized Transport Pore Model

   In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...

متن کامل

Modeling the Thermodynamic Properties of Solutions Containing Polymer and Electrolyte with New Local Composition Model

A new theory model based on the local composition concept (TNRF-modified NRTL (TNRF-mNRTL) model) was developed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. An equation represented the activity coefficient of solvent was derived from the proposed excess Gibbs energy equation. The short-range contribution of interaction ...

متن کامل

Mean Activity Coefficients Measurements and Thermodynamic Modeling of the Ternary Mixed Electrolyte KCl + Lactose + Water System at T = 298.15 K

In this work, the mean activity coefficients of KCl in the KCl+lactose +water system were determined using the potentiometric method. The electromotive force measurements were carried out on the galvanic cell without liquid junction of the type: Ag|AgCl|KCl (m), lactose (wt.%), H2O (1−wt.) %|K-ISE, in various mixed solvent systems containing 0, 5,7.5, 10 and 12.5 % mass fractions of lactose. Th...

متن کامل

Determination and Modeling of Activity Coefficients of Sodium Chloride in (Glycerol + Water) Mixtures Based on Potentiometric Measurements

In this work, the results concerning to the mean activity coefficient measurements for NaCl in the (glycerol + water) system using the potentiometric method are reported. The potentiometric measurements were performed on the galvanic cells without liquid junction of the type: Ag|AgCl|NaCl (m), glycerol (wt%), H2O (1 - wt)%|Na-ISE, in various mixed solvent systems containing 0, 5, 10,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006